bayesline.api.equity.FactorAttributionMeasureSettings#

pydantic model bayesline.api.equity.FactorAttributionMeasureSettings#

Show JSON schema
{
   "title": "FactorAttributionMeasureSettings",
   "type": "object",
   "properties": {
      "type": {
         "const": "FactorAttribution",
         "default": "FactorAttribution",
         "title": "Type",
         "type": "string"
      },
      "rescale_bench": {
         "default": true,
         "description": "Rescale the benchmark holdings to sum to the sum of the holdings.",
         "title": "Rescale Bench",
         "type": "boolean"
      },
      "normalize_holdings": {
         "default": true,
         "description": "Make holdings sum to one.",
         "title": "Normalize Holdings",
         "type": "boolean"
      },
      "multiperiod_aggregation": {
         "default": "none",
         "enum": [
            "none",
            "optimized"
         ],
         "title": "Multiperiod Aggregation",
         "type": "string"
      },
      "return_aggregation_type": {
         "default": "geometric",
         "enum": [
            "arithmetic",
            "geometric"
         ],
         "title": "Return Aggregation Type",
         "type": "string"
      }
   },
   "additionalProperties": false
}

Config:
  • frozen: bool = True

  • extra: str = forbid

Fields:
  • multiperiod_aggregation (Literal['none', 'optimized'])

  • normalize_holdings (bool)

  • rescale_bench (bool)

  • return_aggregation_type (Literal['arithmetic', 'geometric'])

  • type (Literal['FactorAttribution'])

field type: Literal['FactorAttribution'] = 'FactorAttribution'#
field rescale_bench: bool = True#

Rescale the benchmark holdings to sum to the sum of the holdings.

field normalize_holdings: bool = True#

Make holdings sum to one.

field multiperiod_aggregation: Literal['none', 'optimized'] = 'none'#
field return_aggregation_type: Literal['arithmetic', 'geometric'] = 'geometric'#
property columns: list[str]#