Factor Returns Computation Validation#
In this tutorial we are going to compute factor returns from a standard Bayesline factor model and compare the results to those we manually compute with statsmodels
. The specific steps we will follow are:
Create a basic risk model and extract factor returns.
Manually compute factor returns with
statsmodels
.Compare results of extracted factor returns and
statsmodels
regression.
Throughout this notebook we work with a randomly generated dataset. The results should generalize to real data, but we do not show any real data on our public API. Bayesline clients can run this notebook on real data.
0. Imports & Setup#
For this tutorial notebook, you will need to import the following packages.
import numpy as np
import numpy.testing as tst
import pandas as pd
from statsmodels.api import WLS
from statsmodels.stats.weightstats import DescrStatsW
from bayesline.api.equity import (
ExposureSettings,
FactorRiskModelSettings,
ModelConstructionSettings,
UniverseSettings,
)
from bayesline.apiclient import BayeslineApiClient
We will also need to have a Bayesline API client configured.
bln = BayeslineApiClient.new_client(
endpoint="https://[ENDPOINT]",
api_key="[API-KEY]",
)
1. Create a basic risk model and extract factor returns#
Set up the risk model settings#
We will set up a risk model to use InvIdioVar
weights and otherwise default settings.
factorriskmodel_settings = FactorRiskModelSettings(
universe=UniverseSettings(),
exposures=ExposureSettings(),
modelconstruction=ModelConstructionSettings(
weights="InvIdioVar",
return_clip_bounds=(None, None),
),
)
Let’s verify the risk model settings we configured above.
print(factorriskmodel_settings.model_dump_json(indent=2))
{
"universe": [
{
"dataset": null,
"id_type": "bayesid",
"calendar": {
"dataset": null,
"filters": [
[
"XNYS"
]
]
},
"industry": {
"hierarchy": "trbc",
"include": "All",
"exclude": []
},
"region": {
"hierarchy": "continent",
"include": "All",
"exclude": []
},
"mcap": {
"lower": 0.0,
"upper": 1e20,
"gdp_deflator_asof": null
}
}
],
"exposures": [
{
"market": true,
"styles": null,
"standardize_styles": true,
"industries": {
"hierarchy": "trbc",
"level": 1
},
"regions": {
"hierarchy": "continent",
"level": 2
},
"other": {}
}
],
"modelconstruction": [
{
"currency": "USD",
"weights": "InvIdioVar",
"alpha": 0.0,
"alpha_overrides": {},
"return_clip_bounds": [
null,
null
],
"known_factors": {}
}
]
}
Construct risk model with settings#
risk_model = bln.equity.riskmodels.load(factorriskmodel_settings).get()
Extract factor returns from risk model#
factor_returns = (
(risk_model.fret())
.to_pandas()
.set_index("date")
)
factor_returns.columns = pd.MultiIndex.from_tuples(
factor_returns.columns.str.split(".").to_list(), names=["factor_group", "factor"]
)
Let’s take a peek at the factor returns that our risk model computed. We have several groups of factors (market, industry, region, and style), and one or two factors in each group.
factor_returns.head()
factor_group | market | industry | region | style | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
factor | Market | Energy | Basic Materials | Industrials | Consumer Cyclicals | Consumer Non-Cyclicals | Financials | Healthcare | Technology | Utilities | ... | Government Activity | Academic & Educational Services | United States | Size | Value | Growth | Volatility | Momentum | Dividend | Leverage |
date | |||||||||||||||||||||
2024-07-11 | 0.003720 | 0.000109 | 0.010011 | 0.009490 | 0.008789 | 0.000428 | -0.005419 | 0.005167 | -0.003788 | 0.006332 | ... | 0.0 | 0.0 | 0.0 | -0.002078 | 0.002625 | -0.000767 | -0.002144 | -0.006058 | 0.000702 | 0.001400 |
2024-07-12 | 0.008739 | -0.001840 | -0.000279 | -0.001702 | 0.002250 | 0.000048 | 0.001824 | -0.003889 | 0.000235 | -0.000113 | ... | 0.0 | 0.0 | 0.0 | -0.000545 | -0.001136 | 0.001093 | 0.002604 | -0.000475 | 0.000280 | 0.001058 |
2024-07-15 | 0.002315 | 0.006814 | -0.002595 | 0.006462 | -0.002786 | -0.006974 | 0.001122 | -0.008616 | 0.002514 | -0.019141 | ... | 0.0 | 0.0 | 0.0 | 0.001011 | 0.000874 | -0.000873 | 0.002326 | 0.000934 | 0.000639 | -0.000327 |
2024-07-16 | 0.014378 | -0.016056 | 0.009234 | 0.012379 | 0.009606 | 0.000147 | -0.004086 | 0.004208 | -0.002130 | -0.007843 | ... | 0.0 | 0.0 | 0.0 | -0.000222 | 0.003202 | -0.001790 | 0.003833 | -0.001764 | 0.002052 | -0.000404 |
2024-07-17 | -0.010342 | 0.004459 | 0.005016 | 0.003758 | 0.002242 | 0.013622 | -0.009670 | 0.011663 | -0.003574 | 0.007700 | ... | 0.0 | 0.0 | 0.0 | 0.000318 | 0.001227 | -0.001440 | -0.010021 | -0.007815 | 0.002638 | 0.000894 |
5 rows × 22 columns
2. Manually compute factor returns with statsmodels
#
Now, we will manually compute factor returns for numerical comparison to our results.
Write manual regression code#
This is our implementation of a basic factor returns regression with statsmodels
which we will use for comparison. This implementation uses weighted constrained linear regression to model factor returns. Specifically, it solves the following optimization problem to compute factor returns \(f_t\)
where \(j\in\mathrm{ind}\) are all industry factors and \(W_{i,t}\) are the weights of each stock. The constraint effectively says that the (market-cap weighted) industry factor returns sum to zero.
We use weighted linear regression, and from an econometric perspective, the optimal regression weights are (proportional to) the inverses of the variance, \(W_{i,t}=1/\mathrm{Var}(\varepsilon_{i,t})\). Since this is not known, we use the idiosyncratic volatility, or the estimated error variance of a 100-day rolling time-series regression of the returns of each stock against its market factor, \(W_{i,t}=100/\sum_{\tau=1}^{100}{e_{i,t-\tau}^2}\), for the fitted regression,
where the market return is simply the market-cap weighted return of all assets in the estimation universe, \(r_{t}^M=\sum_{i\in\mathcal{I}_t^E}{\mathrm{MCap}_{i,t}r_{i,t}}\).
def statsmodels_regression(
df: pd.DataFrame,
market_caps: pd.DataFrame,
industry_names: list[str],
substyle_names: list[str],
) -> pd.DataFrame:
df = df.dropna()
df = df[df["estimation_universe"]]
factor_names = ["Market", *industry_names, *substyle_names]
weights = (1 / df["idio_vol"] ** 2).fillna(0.0)
X = df[factor_names].copy().astype(np.float32)
y = df["return"]
# compute the adjustment for industry exposure summing to zero
adj = market_caps[1:] / market_caps[0]
X.loc[:, industry_names[1:]] -= adj.values * X.loc[:, industry_names[:1]].values
X = X.drop(columns=industry_names[0])
wls = WLS(
endog=y,
exog=X,
weights=weights,
missing="drop",
hasconst=False, # for r-squared calculation
).fit()
sigma2_eps = DescrStatsW(wls.resid, weights=weights, ddof=0).var
# if the mcap is zero, then t_stats are 0.0 and p_values are 1.0
zero_mcap = [i.replace("industry.", "") for i in market_caps.loc[market_caps == 0.0].index]
wls.tvalues[zero_mcap] = 0.0
wls.pvalues[zero_mcap] = 1.0
wls_results = pd.concat(
{
"factor_returns": wls.params,
"t_stats": wls.tvalues,
"p_values": wls.pvalues,
"r2": pd.Series([wls.rsquared], [None]),
"sigma2": pd.Series(sigma2_eps, [None]),
},
)
return wls_results
Extract the required regression input data to compute factor returns#
A. Exposures#
First, let’s get the exposures for this universe as a pandas DataFrame.
X = risk_model.exposures().to_pandas()
X.head()
date | bayesid | market.Market | industry.Energy | industry.Basic Materials | industry.Industrials | industry.Consumer Cyclicals | industry.Consumer Non-Cyclicals | industry.Financials | industry.Healthcare | ... | industry.Government Activity | industry.Academic & Educational Services | region.United States | style.Size | style.Value | style.Growth | style.Volatility | style.Momentum | style.Dividend | style.Leverage | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2024-07-10 | 00163T10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 1.0 | 0.976562 | 0.551758 | 0.934570 | 0.480957 | -1.534180 | 0.541992 | -0.395996 |
1 | 2024-07-10 | 00287Y10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | ... | 0.0 | 0.0 | 1.0 | 1.520508 | -1.212891 | 1.333984 | -0.263916 | 0.601562 | 1.267578 | 1.652344 |
2 | 2024-07-10 | 03042010 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 1.0 | -0.527344 | 0.419189 | 0.322021 | -0.217163 | -1.499023 | 0.248413 | 0.577637 |
3 | 2024-07-10 | 03674B10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | ... | 0.0 | 0.0 | 1.0 | 0.998047 | 0.350830 | -0.254883 | -0.475830 | -0.064880 | -0.339844 | -0.136108 |
4 | 2024-07-10 | 03761230 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | ... | 0.0 | 0.0 | 1.0 | 1.012695 | 0.134033 | -0.843262 | 0.619141 | 0.748535 | 0.072693 | 0.396484 |
5 rows × 24 columns
Next, we’ll clean up our exposures dataframe slightly and massage it into the desired shape and structure.
# rename to be cleaner names corresponding to df
X.columns = [col.split('.')[-1] if '.' in col else col for col in X.columns]
X['date'] = pd.to_datetime(X["date"])
exposures = X.set_index(["date", "bayesid"])
exposures.head()
Market | Energy | Basic Materials | Industrials | Consumer Cyclicals | Consumer Non-Cyclicals | Financials | Healthcare | Technology | Utilities | ... | Government Activity | Academic & Educational Services | United States | Size | Value | Growth | Volatility | Momentum | Dividend | Leverage | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | bayesid | |||||||||||||||||||||
2024-07-10 | 00163T10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 1.0 | 0.976562 | 0.551758 | 0.934570 | 0.480957 | -1.534180 | 0.541992 | -0.395996 |
00287Y10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 1.0 | 1.520508 | -1.212891 | 1.333984 | -0.263916 | 0.601562 | 1.267578 | 1.652344 | |
03042010 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | ... | 0.0 | 0.0 | 1.0 | -0.527344 | 0.419189 | 0.322021 | -0.217163 | -1.499023 | 0.248413 | 0.577637 | |
03674B10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 1.0 | 0.998047 | 0.350830 | -0.254883 | -0.475830 | -0.064880 | -0.339844 | -0.136108 | |
03761230 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 1.0 | 1.012695 | 0.134033 | -0.843262 | 0.619141 | 0.748535 | 0.072693 | 0.396484 |
5 rows × 22 columns
B. Asset Returns#
Next, we get the returns of our asset universe across dates. Note that some values are NaN
since our estimation universe does not include all the securities in the larger universe across all dates.
returns = (
risk_model.future_asset_returns()
.to_pandas()
.set_index("date")
.stack(dropna=False)
.rename("return")
.to_frame()
)
returns.head()
return | ||
---|---|---|
date | ||
2024-07-10 | 00163T10 | 0.033208 |
00287Y10 | 0.010527 | |
03042010 | 0.030175 | |
03674B10 | -0.001440 | |
03761230 | 0.015854 |
C. Idiosyncractic Volatility#
idio_vol = (
risk_model.weights()
.to_pandas()
.set_index("date")
.stack()
.rename("idio_vol")
.to_frame()
)
idio_vol.head()
idio_vol | ||
---|---|---|
date | ||
2024-07-10 | 00163T10 | 0.013234 |
00287Y10 | 0.012614 | |
03042010 | 0.012296 | |
03674B10 | 0.011921 | |
03761230 | 0.014413 |
D. Estimation Universe#
estimation_universe = (
risk_model.estimation_universe()
.to_pandas()
.set_index("date")
.stack()
.rename("estimation_universe")
.astype('bool')
.to_frame()
)
estimation_universe.head()
estimation_universe | ||
---|---|---|
date | ||
2024-07-10 | 00163T10 | True |
00287Y10 | True | |
03042010 | True | |
03674B10 | True | |
03761230 | True |
Join all the regression components#
df_all = pd.concat(
[exposures, returns, idio_vol, estimation_universe],
axis=1
)
key = pd.MultiIndex.from_product(
[sorted(X['date'].unique()), sorted(X['bayesid'].unique())],
)
df_all = df_all.reindex(key)
df_all[["estimation_universe"]] = df_all[["estimation_universe"]].fillna(False)
df_all.head()
Market | Energy | Basic Materials | Industrials | Consumer Cyclicals | Consumer Non-Cyclicals | Financials | Healthcare | Technology | Utilities | ... | Size | Value | Growth | Volatility | Momentum | Dividend | Leverage | return | idio_vol | estimation_universe | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2024-07-10 | 00163T10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.976562 | 0.551758 | 0.934570 | 0.480957 | -1.534180 | 0.541992 | -0.395996 | 0.033208 | 0.013234 | True |
00287Y10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ... | 1.520508 | -1.212891 | 1.333984 | -0.263916 | 0.601562 | 1.267578 | 1.652344 | 0.010527 | 0.012614 | True | |
03042010 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | ... | -0.527344 | 0.419189 | 0.322021 | -0.217163 | -1.499023 | 0.248413 | 0.577637 | 0.030175 | 0.012296 | True | |
03674B10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ... | 0.998047 | 0.350830 | -0.254883 | -0.475830 | -0.064880 | -0.339844 | -0.136108 | -0.001440 | 0.011921 | True | |
03761230 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | ... | 1.012695 | 0.134033 | -0.843262 | 0.619141 | 0.748535 | 0.072693 | 0.396484 | 0.015854 | 0.014413 | True |
5 rows × 25 columns
Extract Aggregated Market Cap#
We also need market cap data, but this comes in the form of already industry-aggregated market caps, so cannot be merged with the rest of the input data as it does not span across assets. We only need the market caps corresponding to our industry exposures, so we can filter out any other columns.
# get the market caps
market_caps = (
risk_model.market_caps()
.to_pandas()
.set_index("date")
.reindex(df_all.index.get_level_values(0).unique())
)
# get all industry names and reformat strings from factor returns
industries = factor_returns.loc[:,'industry'].columns.to_list()
industries_long = [f"industry.{i}" for i in industries]
# filter market caps to industries
market_caps = market_caps[industries_long]
Drop weekly and forward fill#
Since factor returns tend to be stable over short periods of time, we only compute the regression every week on Wednesdays. Thus, we will drop all data on non-Wednesdays and forward fill.
# slice on reset day (every wednesday) and fill forward
forward_fill_cols = [*exposures.columns, "estimation_universe", "idio_vol"]
# fill returns
df_all.loc[df_all["estimation_universe"], "return"] = df_all.loc[
df_all["estimation_universe"],
"return",
].fillna(0.0)
df_all.head()
Market | Energy | Basic Materials | Industrials | Consumer Cyclicals | Consumer Non-Cyclicals | Financials | Healthcare | Technology | Utilities | ... | Size | Value | Growth | Volatility | Momentum | Dividend | Leverage | return | idio_vol | estimation_universe | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2024-07-10 | 00163T10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ... | 0.976562 | 0.551758 | 0.934570 | 0.480957 | -1.534180 | 0.541992 | -0.395996 | 0.033208 | 0.013234 | True |
00287Y10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ... | 1.520508 | -1.212891 | 1.333984 | -0.263916 | 0.601562 | 1.267578 | 1.652344 | 0.010527 | 0.012614 | True | |
03042010 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | ... | -0.527344 | 0.419189 | 0.322021 | -0.217163 | -1.499023 | 0.248413 | 0.577637 | 0.030175 | 0.012296 | True | |
03674B10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | ... | 0.998047 | 0.350830 | -0.254883 | -0.475830 | -0.064880 | -0.339844 | -0.136108 | -0.001440 | 0.011921 | True | |
03761230 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | ... | 1.012695 | 0.134033 | -0.843262 | 0.619141 | 0.748535 | 0.072693 | 0.396484 | 0.015854 | 0.014413 | True |
5 rows × 25 columns
market_caps = market_caps.ffill()
market_caps.index.name = "date"
market_caps.head()
industry.Energy | industry.Basic Materials | industry.Industrials | industry.Consumer Cyclicals | industry.Consumer Non-Cyclicals | industry.Financials | industry.Healthcare | industry.Technology | industry.Utilities | industry.Real Estate | industry.Institutions, Associations & Organizations | industry.Government Activity | industry.Academic & Educational Services | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
date | |||||||||||||
2024-07-10 | 1.904221e+12 | 8.785948e+11 | 3.498445e+12 | 5.831768e+12 | 3.587556e+12 | 9.009189e+12 | 5.333572e+12 | 2.377126e+13 | 9.625473e+11 | 7.884271e+11 | 0.0 | 0.0 | 0.0 |
2024-07-11 | 1.922298e+12 | 8.875750e+11 | 3.536727e+12 | 5.732125e+12 | 3.601812e+12 | 9.030046e+12 | 5.364956e+12 | 2.318909e+13 | 9.795558e+11 | 8.098559e+11 | 0.0 | 0.0 | 0.0 |
2024-07-12 | 1.927028e+12 | 8.950382e+11 | 3.556060e+12 | 5.780063e+12 | 3.627238e+12 | 9.061463e+12 | 5.398659e+12 | 2.332728e+13 | 9.862986e+11 | 8.156006e+11 | 0.0 | 0.0 | 0.0 |
2024-07-13 | 1.927028e+12 | 8.950382e+11 | 3.556060e+12 | 5.780063e+12 | 3.627238e+12 | 9.061463e+12 | 5.398659e+12 | 2.332728e+13 | 9.862986e+11 | 8.156006e+11 | 0.0 | 0.0 | 0.0 |
2024-07-14 | 1.927028e+12 | 8.950382e+11 | 3.556060e+12 | 5.780063e+12 | 3.627238e+12 | 9.061463e+12 | 5.398659e+12 | 2.332728e+13 | 9.862986e+11 | 8.156006e+11 | 0.0 | 0.0 | 0.0 |
Run statsmodels
regression to compute factor returns#
Now, we will take all the components we created above and run our manual regression function to compute factor returns.
# get trade days from the universe
trade_days = risk_model.universe().to_pandas().set_index("date").index
# get all style names factor returns
styles = factor_returns.loc[:,'style'].columns.to_list()
# perform regression on each date
manual_computation = {
g: statsmodels_regression(df, mcap, industries, styles)
for (g, df), (_, mcap) in zip(df_all.groupby(level=0), market_caps.iterrows())
if g in trade_days
}
manual_computation = (
pd.concat(manual_computation, axis=1, names=["date"])
.T.reindex(trade_days)
.shift(1)
.tail(-1)
)
manual_computation.head()
factor_returns | ... | p_values | r2 | sigma2 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Market | Basic Materials | Industrials | Consumer Cyclicals | Consumer Non-Cyclicals | Financials | Healthcare | Technology | Utilities | Real Estate | ... | Academic & Educational Services | Size | Value | Growth | Volatility | Momentum | Dividend | Leverage | NaN | NaN | |
date | |||||||||||||||||||||
2024-07-11 | 0.003720 | 0.010011 | 0.009490 | 0.008789 | 0.000428 | -0.005419 | 0.005167 | -0.003788 | 0.006332 | 0.012967 | ... | 1.0 | 0.000756 | 0.018510 | 0.518221 | 2.607067e-04 | 3.612547e-22 | 0.513767 | 0.161875 | 0.367868 | 0.000092 |
2024-07-12 | 0.008739 | -0.000279 | -0.001702 | 0.002250 | 0.000048 | 0.001824 | -0.003889 | 0.000235 | -0.000113 | -0.005196 | ... | 1.0 | 0.111995 | 0.063170 | 0.092116 | 6.120009e-15 | 1.500278e-01 | 0.632274 | 0.053296 | 0.556770 | 0.000029 |
2024-07-15 | 0.002315 | -0.002595 | 0.006462 | -0.002786 | -0.006974 | 0.001122 | -0.008616 | 0.002514 | -0.019141 | 0.005136 | ... | 1.0 | 0.026739 | 0.282576 | 0.310186 | 1.406784e-07 | 3.949190e-02 | 0.411712 | 0.651988 | 0.283848 | 0.000051 |
2024-07-16 | 0.014378 | 0.009234 | 0.012379 | 0.009606 | 0.000147 | -0.004086 | 0.004208 | -0.002130 | -0.007843 | -0.006177 | ... | 1.0 | 0.691972 | 0.001407 | 0.090299 | 2.531491e-12 | 2.066883e-03 | 0.032275 | 0.649578 | 0.554508 | 0.000077 |
2024-07-17 | -0.010342 | 0.005016 | 0.003758 | 0.002242 | 0.013622 | -0.009670 | 0.011663 | -0.003574 | 0.007701 | 0.014041 | ... | 1.0 | 0.613145 | 0.274585 | 0.223212 | 4.001509e-48 | 7.265039e-29 | 0.014195 | 0.372200 | 0.582626 | 0.000097 |
5 rows × 62 columns
3. Compare results of extracted factor returns and statsmodels
regression.#
In order to perform a complete comparison, we take our factor returns and check that all of the following match the statsmodels
regression computation.
factor returns
t-stats
p-values
Compare factor returns#
# drop the last industry and region due to the constraint handling and
# since the US is the only region present in the dataset
last_ind = "industry." + industries[0]
drop_cols = ["date", last_ind, "region.United States"]
factor_returns_array = risk_model.fret()
factor_returns_array = factor_returns_array.drop(drop_cols).to_numpy()
tst.assert_array_almost_equal(factor_returns_array, manual_computation["factor_returns"].values)
Compare t-stats#
t_stats = risk_model.t_stats()
t_stats = t_stats.drop(drop_cols).to_numpy()
tst.assert_array_almost_equal(t_stats, manual_computation["t_stats"].values, decimal=3)
Compare p-values#
p_values = risk_model.p_values()
p_values = p_values.drop(drop_cols).to_numpy()
# compare the p-values in different ranges with different precisions (high for low p-values)
# this is due to numerical precision of the t-distribution CDF approximation
tst.assert_array_almost_equal(p_values.clip(None, 0.05), manual_computation["p_values"].clip(None, 0.05).values, decimal=4)
tst.assert_array_almost_equal(p_values.clip(0.05, 0.9), manual_computation["p_values"].clip(0.05, 0.9).values, decimal=3)
tst.assert_array_almost_equal(p_values.clip(0.9, None), manual_computation["p_values"].clip(0.9, None).values, decimal=2)